Cutting Planes for Mixed Integer Programming

نویسنده

  • Michael Russell
چکیده

The purpose of this paper is to present an overview of families of cutting planes for mixed integer programming problems. We examine the families of disjunctive inequalities, split cuts, mixed integer rounding inequalities, mixed integer Gomory cuts, intersection cuts, lift-and-project cuts, and reduceand-split cuts. In practice, mixed integer Gomory cuts are very useful in obtaining solutions to mixed integer programming problems. Hence, we also examine how to use intersection cuts, lift-and-project cuts, and reduce-and-split cuts to obtain cuts which are stronger than a mixed integer Gomory cut.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chvátal Closures for mixed Integer Programming Problems

Chvfital introduced the idea of viewing cutting planes as a system for proving that every integral solution of a given set of linear inequalities satisfies another given linear inequality. This viewpoint has proven to be very useful in many studies of combinatorial and integer programming problems. The basic ingredient in these cutting-plane proofs is that for a polyhedron P and integral vector...

متن کامل

On the Generation of Cutting Planes which Maximize the Bound Improvement

We propose the bound-optimal cutting plane method. It is a new paradigm for cutting plane generation in Mixed Integer Programming allowing for the simultaneous generation of k cuts which, when added to the current Linear Programming relaxation, yield the largest bound improvement. By Linear Programming duality arguments and standard linearization techniques we show that, for a large family of c...

متن کامل

Cutting planes in integer and mixed integer programming

This survey presents cutting planes that are useful or potentially useful in solving mixed integer programs. Valid inequalities for i) general integer programs, ii) problems with local structure such as knapsack constraints, and iii) problems with 0-1 coefficient matrices, such as set packing, are examined in turn. Finally the use of valid inequalities for classes of problems with structure, su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006